Approximate Homomorphic Encryption

- Construction & Bootstrapping

Yongsoo Song, Seoul National Univ

ECC 2018, Osaka



Approximate Homomorphic Encryption

- Construction & Bootstrapping

Yongsoo Song, SeeutNatenatUniv
UC San Diego

ECC 2018, Osaka



Approximate Homomorphic Encryption

- Construction & Bootstrapping

Yongsoo Song, SeeutNatenatUniv
HESanbiego
Microsoft Research, Redmond

ECC 2018, Osaka



Table of Contents

= Background

= Construction
= [CKKS, AC17] Homomorphic Encryption for Arithmetic of Approximate Numbers

= Bootstrapping
= [CHKKS, EC18] Bootstrapping for Approximate Homomorphic Encryption

» Related Works



Advanced Cryptography

= Protecting Computation, not just data




Advanced Cryptography

Protecting Computation, not just data

Differential Privacy

= Zero-knowledge Proof

Multiparty Computation

= Attribute Based Encryption



Advanced Cryptography

Protecting Computation, not just data

Differential Privacy

Zero-knowledge Proof

Multiparty Computation

Attribute Based Encryption

Homomorphic Encryption (2009~)
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Multi-Party Computation

res = F(DB-i)

- Security Model
- Communication Costs |F|, k



Comparison: HE vs MPC

Homomorphic Encryption

Multi-Party Computation

One-time encryption Single-use encryption
Re-usability
No further interaction Interaction between parties each time
Semi-honest Cloud Semi-honest parties
Model
+ Trusted SK Owner without collusion
Slow in computation Slow in communication
Speed
(but can speed-up using SIMD) | (due to large circuit to be exchanged)
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= 2009-10: Plausibility L :
= [GH11] A single bit operation takes 30 minutes ;‘\@L‘E_
— I -

= 2011-12: Large Circuits
= [GHS12b] 120 blocks of AES-128 (30K gates) in 36 hours
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Summary of PI'OgI‘ESSES

2009-10: Plausibility

20

= [GHS12b] 120 blocks of AES-128 (30K gates) in 36 hours

[GH11] A single bit operation takes 30 minutes

11-12: Large Circuits

2013-15: Efficiency

= Implementation of Brakerski-Gentry-Vaikuntanathan (BGV) scheme

[HS14] IBM's open-source library HElib

The same 30K-gate circuit in 4 minutes

2015-today: Usability

Various schemes with different advantages

Simpler and faster implementations

Real-world tasks: Big data analysis, Machine learning
Standardization meetings (2017~)

iDASH competitions (2014~)
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4 Big Takeaways from Satya Nadella's Talk at
Microsoft Build

0 006

One way Nadella is attempting to convince businesses that Microsoft (MSFT,
+3.63%) can improve its Al technology while protecting user data is by
promoting a computing technique called homomorphic encryption. Although
still a research-heavy technique, homomorphic encryption would presumably

let companies analyze and crunch encrypted data without needing to

WL TTCAN

unscramble that information.

By JONATHAN VANIAN May 7, 2018

Microsoft CEO Satya Nadella is trying to distinguish the
giant from its technology brethren by focusing on digital 'N[ae]]a is pitching the technique as a way for companies to “learn, train on

encrypted data.” The executive didn’t explain how far along Microsoft is on
advancing the encryption technique, but the fact that he mentioned the wonky
terms shows that the company is touting user privacy as a selling point for its

Azure cloud business.
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Best Performing HE Schemes

Classical HE Fast Bootstrapping Approximate Encryption

[BGV12] BGV [DM15] FHEW
>cheme [Bral2, FV12] B/FV [CGGI16] TFHE R =i
Plaintext Finite Field Binary strin Real/Complex numbers
Packing y & Packing

Operation Addition, Multiplication Look-up table & bootstrapping Fixed-point Arithmetic

| HEllb (IBM) e
Library SEAL (Microsoft Research) (inpher. semalto. etc) HEAAN (SNU)
Palisade (Duality inc.) pher. g , Cte



iDASH Security & Privacy Workshop

= An interdisciplinary challenge on genomic
privacy research

"
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= Motivated by real world biomedical applications

. i i yenomewen
= Participation of privacy technology experts ED DTS

< 8
»To Keep It Safe and Sound

(acad e m i a an d i n d u St ry> E:treme cryptography paves way to personalized ) 0 60090

medicine

Encrypted analysis of data in the cloud would allow secure access to sensitive information.

search  Clinical sease Areas

‘o Keep It Safe and Sound

ar 25, 2015
Erika Check Hayden

M M M 16 of the concems about using genetic data along with medical records
] evelope ractica et rieorous solutions rtor — o o psaral el hov 1 kg Pt gl bl i
1t still easily accessible for analysis. Cryptographers at a workshop hosted by the
& poF | A Rights & Permissions riversity of California, San Diego, test: t thod that

privacy preserving genomic data sharing and e
analysis

loading the encoded form to the cloud where it can be analyzed, Check Hayden
tes. Encoded results are then sent back to a local computer, which unscrambles
2 data. Any data intercepted along the way would be encrypted.

1e notes that this idea dates back to 1978, but remained largely theoretical until
109 when IBM Thomas J. Watson Research Center's Craig Gentry showed that
mputational analyses could be carried out on homomorphically encrypted data.

the UCSD workshop, cryptographers showed that such an approach could
alyze data from 400 people within about 10 minutes and pinpoint a variant
sociated with disease from among few hundred loci. Analysis of larger datasets
d more base pairs wasn't always possible, Check Hayden says, and it could take
ot of computer memory, time, or money.

= Reported in the media (e.g.,, Nature News,
GenomeWeb)

hile the workshop organizers find the approach promising, others say it might not
ovide enough protection for the data or allow researchers and clinicians to

form all the analyses they want. US National Center for Biotechnology
‘'ormation’s Steven Sherry, for instance, prefers restricting data access to a select
 people who have agreed to follow certain regulations on how the data may be
ed.

erg

Cloud processing of DNA sequence data promises to speed up discovery of disease-linked gene
variants.

The dream for tomorrow’s medicine is to understand the links between DNA and disease — and to

tailor therapies accordingly. But scientists working to realize such ‘personalized” or ‘precision”
medicine have a problem: how to keep genetic data and medical records secure while stil enabling

http://www.nature.com/news/extreme-cryptography-paves-way-to-personalized-medicine-1.17174



iDASH 2017 - Logistic Regression Model Training

= A machine learning model to predict the disease

= 1500 records + 18 features for training
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iDASH 2017 - Logistic Regression Model Training

= A machine learning model to predict the disease

= 1500 records + 18 features for training

Secure learning

Overall time

Time (mins) Memory (MB) (mins)
SNU 0.6934 10.250 2775.333 10.360
CEA LIST 0.6930 2206.057 238.255 2207.363
KU Leuven 0.6722 155.695 7266.727 160.912
EPFL 0.6584 15.089 1498.513 16.739
MSR 0.6574 385.021 26299.344 396.390
Waseda* 0.7154 2077 /7635.600 5.332
Saarland** N/A 48.356 29752.527 57.344

* Interactive mechanism, no complete guarantee on 80-bit security at “analyst” side

@
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1IDASH 2018 — Semi-Parallel GWAS

= Compute Genome Wide Association Studies (GWAS)
= 3 Co-variants [age, height, weight] + 14,841 SNPS

X Z ~ Y
\ v j -
Co-variants SNP data Response
X {Zi| ~|Y

Repeat logistic regression n times



1IDASH 2018 — Semi-Parallel GWAS

= Compute Genome Wide Association Studies (GWAS)

= 3 Co-variants [age, height, weight] + 14,841 SNPS

o Time Memor

Team Submission Schemes (mins) (MB) y Accuracy
A*EHE A*FHE 1 HEAAN 922.48 3,777 0.999
A*FHE 2 1,632.97 4,093 0.905
. Version 1 TFHE+HEAAN 201.73 10,375 0.993
Chimera < on 2 (Chimera) 21595 15,166 0.35
Delft Blue Delft Blue HEAAN 1,844.82 10,814 0.969
sy losRer e eSO 0593
Lin Reg pkg: RNS HEAAN 0.42 3,387 0.989

) Log Reg HEAAN _ 0.993
Duality Inc-c 5o pkg: PALISADE 009 1512 0.983
SNU 1 52.49 15,204 0.984

SNU HEAAN

SNU 2 52.37 15,177 0.988

IBM-Complex HEAAN 23.35 8,651 0.911

BM BM- Real pkg: HELb 5265 15613 0526

X VA ~ 1Y

\ Y ) \_Y_}

Co-variants SNP data Response

Repeat logistic regression n times
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= Numerical Representation
Encode m into an integer m = px for a scaling factor p
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= Numerical Representation
Encode m into an integer m = px for a scaling factor p
V2 - 1412 = V2 - 10°
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Approximate Computation

= Numerical Representation

Encode m into an integer m = px for a scaling factor p

V2 - 1412 = V2 - 10°
= Fixed-Point Multiplication

Compute m = mym, and extract its significant digits m' = p~1-m

1.234 x 5.678 = (1234 - 1073) x (5678 - 1073) = 7006652 - 107° » 7007 - 1073 = 7.007
= Previous (LWE-based) HE

e
%m+e (mod q) m -

\ ) )

ct = Encg (m), (ct,sk) =

Modulo t plaintext vs Rounding operation

—_—
—



HEAAN

= A New Message Encoding
ct = Encge(m), (ct,sk) = pm+ e (modq)

Consider e as part of approximation error




HEAAN

= A New Message Encoding Uy =pmq+e;

ct = Encgx(m), (ct,sk) = pm+ e (mod q) \ I

Consider e as part of approximation error q
= Homomorphic Operations Ha = Py +i
Input: Uy = pmq, Uy = pMy

Add|t|on U1 + U = D (m1 + mz)
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Consider e as part of approximation error
= Homomorphic Operations
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Addition: Ui+ U, = p-(mqy+my)

Multiplication: u = uqu, = p? - mym,
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HEAAN

= A New Message Encoding
ct = Encge(m), (ct,sk) = pm+ e (modq)
Consider e as part of approximation error

= Homomorphic Operations
Input: Uy = pmq, Uy = pMy
Addition: Ui+, = p-(mqy+my)
Multiplication: u = uqu, = p? - mym,
Rounding: W =pl-u=p-mm,

= Support for the (approximate) fixed-point arithmetic !

= Leveled HE : g = p*
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Packed Ciphertext

= Construction over the ring R =Z[X]/(X™ + 1) and R, = R (mod q)

= Packing Technique:

= A single ciphertext can encrypt a vector of plaintext values z = (z,2,,...,2))
= Parallel computation in a SIMD manner z @ w = (z,wy,2z,W,, ..., Z,W;)

= RLWE-based HEAAN

= A ciphertext can encrypt a polynomial m(X) € R

= Observation: X" +1=& — ()X —{TDX - )X =G e (X = 8ny) X — $072)
= Decoding/Encoding function

R=Z[X]/(X"+1) c R[X]/(X"+1) -» (V2
uX) o z= (24, 2ns2) i = u(§)

= Permutation of plaintext slots

Rotate: EnC(Zl,Zz, ...,Zn/z) = EnC(Zz, ...,Zn/z,Zl)



Table of Contents

= Background

= CoRstruetion
= [CKKS, AC17] Homomorphic Encryption for Arithmetic of Approximate Numbers

= Bootstrapping
= [CHKKS, EC18] Bootstrapping for Approximate Homomorphic Encryption

» Related Works



Bootstrapping of HEAAN

= Bootstrapping

= Ciphertexts of a leveled HE have a limited lifespan
= Refresh a ciphertext ct = Encg (m) by evaluating the decryption circuit homomorphically

Decg (ct) = m < F(sk) = m where F(x) = Dec,(ct)
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Bootstrapping of HEAAN

= Bootstrapping

= Ciphertexts of a leveled HE have a limited lifespan
= Refresh a ciphertext ct = Encg (m) by evaluating the decryption circuit homomorphically

Decg (ct) = m < F(sk) = m where F(x) = Dec,(ct)

= Bootstrapping key BK = Encg,(sk)
F(BK) = F(Encsk(sk)) = Encsk(F(sk)) = Ency (m)

= HEAAN

= Homomorphic operations introduce errors
F(BK) = F(Encsk(sk)) = Encg (F (sk) + e) = Encgy (m + e)

= |t is ok to have an additional error
= How to evaluate the decryption circuit efficiently?

Decg (ct) = (ct,sk) (mod q)



Approximate Decryption

Decgk(ct) = t = {ct,;sk) = [t], =u,
t=ql +u for some |I| <K

= Naive solution: polynomial interpolation on [—Kgq,Kq]

= Huge depth, complexity & inaccurate result

/o / S




Approximate Decryption

Decgk(ct) = t = {ct,;sk) = [t], =u,

t=ql +pu for some |I| <K

= |dea 1: Restriction of domain |u| < ¢

/Kq



Approximate Decryption

Decgk(ct) = t = {ct,;sk) = [t], =u,

t=ql +pu for some |I| <K

= |dea 1: Restriction of domain |u| < ¢

= |[dea 2: Sine approximation u = %T sinf for 6 = %ﬂ t

\4



Sine Evaluation

sine
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Sine Evaluation

= Direct Taylor approximation —sine —T 31
= huge depth & complexity, low precision 1
AR




Sine Evaluation

= Direct Taylor approximation ) —sine —s_0(X)
= huge depth & complexity, low precision
| Y

= |[dea 1: Low-degree approximation of

smooth functions
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Sine Evaluation

= Direct Taylor approximation
= huge depth & complexity, low precision

= |[dea 1: Low-degree approximation of

smooth functions

-1k
Co0) = To G (0/27)%% ~ cos(8/27),

—1)k :
50(0) = Tfkoo (o (0/27) 21 ~ sin(9/27).

» [dea 2: Use double-angle formula

Cri1(0) = CF(O) — SE(B), Sky1 (8) = 2S,(6) - C(0).
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Sine Evaluation

= Direct Taylor approximation
= huge depth & complexity, low precision

= |[dea 1: Low-degree approximation of | 1
L~
smooth functions
_yd CDE 2k r B SR LR R R HEEE %{
Co(0) = Xi—o—=(0/2")% = cos(6/27),

(2k)!

—1)k :
50(0) = Tfkoo (o (0/27) 21 ~ sin(9/27).

» [dea 2: Use double-angle formula

Cri1(0) = CF(O) — SE(B), Sky1 (8) = 2S,(6) - C(0).




Sine Evaluation

= Direct Taylor approximation
= huge depth & complexity, low precision

= |[dea 1: Low-degree approximation of

smooth functions

-1k
Co0) = To G (0/27)%% ~ cos(8/27),

—1)k :
50(0) = Tfkoo (o (0/27) 21 ~ sin(9/27).

» [dea 2: Use double-angle formula

Cri1(0) = CF(O) — SE(B), Sky1 (8) = 2S,(6) - C(0).
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Sine Evaluation

= Direct Taylor approximation
= huge depth & complexity, low precision

= |[dea 1: Low-degree approximation of

smooth functions

-1k
Co0) = To G (0/27)%% ~ cos(8/27),

—1)k :
50(0) = Tfkoo (o (0/27) 21 ~ sin(9/27).

» [dea 2: Use double-angle formula

Cri1(0) = CF(O) — SE(B), Sky1 (8) = 2S,(6) - C(0).

_—




Sine Evaluation

= Direct Taylor approximation —sine =5 5(x)
= huge depth & complexity, low precision

= |[dea 1: Low-degree approximation of

smooth functions
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= |dea 2: Use double-angle formula

Cri1(0) = CF(O) — SE(B), Sky1 (8) = 2S,(6) - C(0).



Sine Evaluation

= Direct Taylor approximation ) —sine —5_6(x)
= huge depth & complexity, low precision ﬂ ” ﬂ/ﬁ
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= |[dea 1: Low-degree approximation of

smooth functions

-1k
Co0) = To G (0/27)%% ~ cos(8/27),

(-1 .
So(0) = Zﬁ:o (2k+1)!(8/2r)2k+1 ~ sin(6/27). .\

» [dea 2: Use double-angle formula

Cri1(0) = CF(O) — SE(B), Sky1 (8) = 2S,(6) - C(0).



Sine Evaluation

= Direct Taylor approximation —sine =5 7(X)
= huge depth & complexity, low precision

A
= |[dea 1: Low-degree approximation of 9 m /

smooth functions

(2k)!
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(2k+1)!

So(6) = Sfoo S (6/27) %41 % sin(6/27). :U /

» [dea 2: Use double-angle formula

Cri1(0) = CF(O) — SE(B), Sky1 (8) = 2S,(6) - C(0).



Sine Evaluation

= Direct Taylor approximation ) —sine =5 8(x)
= huge depth & complexity, low precision

= |dea 1: Low-degree approximation of

smooth functions

]
cdevb 4ok ol odiobkodedesbedeskebodsckodadeobodnob oo dan cofcobodsckodsdeahsdnalated
—qdsckrdosksfedrzEstedeskedcskeksdscksdodeskodrnobofsdasksdasfisbedaskatsdeskadnelobrg
—_— oLy Rl K KB4 SN A LI SGE LA CIOR DK G G K R A R CER L G G CEs DL AR i GK IV L) 2GR K B VDK Kl SR
r r BN 38 BE BE SRR BE- ERS EF B Y 35 G SRR I GER S EIN 3-8 B Y EE PR St §

0.4

(2k)!

S0(8) = ko T2 (6/27)24+1 ~ sin(8/2").

@k ARRRRRRERE

» [dea 2: Use double-angle formula

Cre+1(8) = CZ(8) = S; (), Sir1 (6) = 25, (6) - C(6). Sy(6) = sin 6




Sine Evaluation

= Direct Taylor approximation ) —sine =5 8(x)
= huge depth & complexity, low precision

= |dea 1: Low-degree approximation of

smooth functions
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(2k)!

S0(8) = ko T2 (6/27)2+1 ~ sin(8/2").
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» [dea 2: Use double-angle formula

Cre+1(8) = CZ(8) = S§ (), Si+1 (6) = 25, (6) - C(6). Sy(6) = sin 6

= Numerically stable & Linear complexity




Slot-Coefficient Switching

= Ring-based HEAAN

= Homomorphic operations on plaintext slots, not on coefficients
= We need to perform the modulo reduction on coefficients



Slot-Coefficient Switching

= Ring-based HEAAN
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Slot-Coefficient Switching

Ring-based HEAAN

= Homomorphic operations on plaintext slots, not on coefficients
= We need to perform the modulo reduction on coefficients

Pre/post computation before/after sine evaluation

Performance of Bootstrapping
= Depth consumption : Sine evaluation

= Complexity: Slot-Coefficient switchings (# of slots)

Experimental Results

n 127 + 12
= 456 + 68

139 s / 128 slots X 12 bits
524 s / 128 slots X 24 bits

Coefficient Plaintext Slots

R[X]/(X™ + 1) cn/2

t(X) =q-1(X) +u(X) 2. sine eva

1. coeff to slot ;} (Lo,tqs - tp_1) D

3. slot to coeff (_ (Hosth s p—1)

‘ HX) = po + ot py X0
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